
F453 Module 7: Programming Techniques

7.2: Methods for

defining syntax

2

F453 Module 7: Programming Techniques

2

What this module is about

• In this module we discuss:

• explain how functions, procedures and their related variables

may be used to develop a program in a structured way, using

stepwise refinement;

• describe the use of parameters, local and global variables as

standard programming techniques;

• explain how a stack is used to handle procedure calling and

parameter passing;

• explain the need for, and be able to create and apply, BNF

(Backus-Naur form) and syntax diagrams;

• explain the need for reverse Polish notation;

• convert between reverse Polish notation and infix form

of algebraic expressions using trees and stacks.

3

F453 Module 7: Programming Techniques

Introduction

• One of the common requirements of the CPU is to be able to

handle algebraic expressions such as: 4(3-2)*(5+6)

• We know that mathematical operators have precedence - they

have an order. The brackets have to be evaluated first, then

mulitply or divide and so on. Working with the example above

we get : 4(1)*(11)

• then deal with the left term we get: 4*11

• Answer: 44

• This form of notation is called algebraic 'infix' notation.

• CPUs do not evaluate expressions in this way. They use the

'stack' data structure to evaluate expressions, and infix notation

is not compatible with a stack and so another method must be

found.

3

4

F453 Module 7: Programming Techniques

Reverse Polish Notation

• For example a standard infix expression looks

like: 4+5

• where the + operator is placed between the

numbers being added. And the answer is 9 of

course.

• In reverse polish notation, the same expression is

set out as follows: 4 5 +

• The rule is that the operator acts upon the

preceding two numbers. Therefore adding 4

and 5 together is still 9.

4

5

F453 Module 7: Programming Techniques

Reverse Polish Notation

• Consider this expression: 6*(4+5) - 25/(2+3)

– The answer is 49

• The same expression in reverse polish: 6 4 5 + * 25 2 3 + / -

– To work it out, start from the left and go to the first operator

then carry out that operation on the preceding two numbers.

– 6 4 5 + * 25 2 3 + / - becomes 6 9 * 25 2 3 + / -

• the next operator is a multiply * so the expression is now

– 54 25 2 3 + / -

• add the 2 and 3 together to make 5, the expression is now

– 54 25 5 / -

• the next operator is a divide, so divide 25 by 5 to get the expression

– 54 5 -

• finally subtract 5 from 54 and the answer is 49. The same as the infix

expression.

5

6

F453 Module 7: Programming Techniques

Using stack with reverse

polish

6

7

F453 Module 7: Programming Techniques

Binary Tree

• You can use a binary tree to convert

between infix and reverse Polish notation.

• The image below is for the infix for:

– 5+((1+2)*4)-3

7

8

F453 Module 7: Programming Techniques

Binary tree and reverse

Polish
• The algorithm to use to derive the reverse Polish expression is listed

below

1. Traverse the left sub tree until there isn't one

2. Traverse the right sub tree (if there is one)

3. Re-visit the root of the current branch

4. Repeat 1,2,3 until every node has been visited.

• This is called the 'postorder' algorithm. The algorithm is an example

of recursion because it repeats the same set of actions at every node.

• It is possible to also derive the expression in reverse polish by using

another algorithm called the ‘preorder’ algorithm. This is

1. Visit the root node

2. Visit the left branch

3. Visit the right branch

8

9

F453 Module 7: Programming Techniques

Binary tree and reverse

Polish

9

10

F453 Module 7: Programming Techniques

Binary tree and infix

notation

• The algorithm used to traverse the binary tree

in order to derive the infix expression is:

1.Traverse the left branch until there is no left branch

2.Visit the root of the current branch

3.Traverse the right sub tree if there is one

4.Repeat steps 1, 2 and 3 until every node has been

visited.

• This is called the 'inorder' algorithm. The

algorithm is an example of recursion because it

repeats the same set of actions at every node.

10

11

F453 Module 7: Programming Techniques

Binary tree and infix

notation

11

