

Chemistry B (Salters)

Advanced GCE F334

Chemistry of Materials

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Question	Expected Answers	Marks	Additional Guidance
1 (a)	Alkene / carbon-carbon double bond / C=C ✓ alcohol / hydroxyl / hydroxy ✓	2	Double bond alone does NOT score. ALLOW secondary alcohol but not primary or tertiary. Do NOT allow hydroxide.
1 (b) (i)	HO VV	2	If more than 3 circles, any surplus INCORRECT ones are CON IGNORE surplus CORRECT circles 2 marks for 3 correct 1 mark for 2 correct 0 marks for only 1 correct
1 (b) (ii)	(The mirror images / molecules / structures / enantiomers / they) are non-superimposable / cannot be superimposed \checkmark	1	
1 (c) (i)	The masses of the different types of atom present are not integers / masses are measured relative to carbon-12 (12.00000) ✓		<i>mark independently</i> ALLOW high resolution MS gives accurate <i>M</i> _r to 4 decimal places
	OR		
	different compounds with the same whole number molecular mass will have different M_r values from high resolution spectra / AW \checkmark	2	
	AND		
	Comparison of M_r with database / list of formulae/ M_r values \checkmark		ALLOW calculate molecular formula by using masses of atoms involved
	Peak: CH ₃ ⁺ ✓		MUST have correct charge for first mark
1 (c) (ii)	species lost = OH ✓	2	MUST be neutral for the second mark

F334	Mark Sch	eme	June 2010
Question	Expected Answers	Marks	Additional Guidance
1 (d) (i)	R H H C O C O C O C O C O C O C O C O C	1	ALLOW this, though not full structural! DO NOT ALLOW skeletal formula
1 (d) (ii)	ethanoic acid \checkmark <u>concentrated</u> sulfuric acid / <u>concentrated</u> hydrochloric acid \checkmark	2	Mark separatelyIGNORE conc./ dil. / aq. for ethanoic acidModerately is CON for acidALLOW correct formula.e.g. CH_3COOH and conc H_2SO_4
1 (e)	$C_{24}H_{31}NO$ + $2Br_2 \rightarrow C_{24}H_{31}NOBr_4 \checkmark$	1	ALLOW correct formula to be given in any order of atoms

F334	Mark Sch	eme	June 2010
Question	Expected Answers	Marks	Additional Guidance
1 (f)	Any four from:		Please annotate with ticks to show where ALL marks are awarded
	1. Heat the (impure) sample with solvent / use hot/warm solvent \checkmark		IGNORE extra points after 4 have been scored
	2. with a minimum amount (of solvent) / add solvent to solid until just dissolves \checkmark		IGNORE name of solvent
	3. filter ✓		If no solvent is used then no marks can be scored similarly if 4 . is incorrect then 5 . cannot be scored
	4. leave filtrate/solution/mixture to cool / leave to crystallise \checkmark		
	5. filter off crystals, wash and dry \checkmark	5	
	AND for QWC mark:		QWC only one statement required for this mark
	EITHER First filtration / filtration of hot solution removes insoluble impurities		ALLOW 'impurities which do NOT dissolve' / solid impurities
	OR after crystallisation <u>soluble</u> impurities stay in solution / AW		ALLOW 'impurities which dissolve'
	(QWC) ✓		

F334	Mark So	cheme	June 2010
Question	Expected Answers	Marks	Additional Guidance
1 (g)			Alternative answers to the 3 answers on the left: IGNORE incorrect answers, including 'is it toxic/harmful?', 'is it cost-effective?' 'can it be modified?' NOTE only one mark can be scored for each of the candidate's questions (e.g. 'effective and better' in one question only scores 1)
	1. Is the drug safe (to be used in humans)? \checkmark		1. Are there any side-effects ? / AW
		3	1. What is the safe-dose ? / AW
	2 Does it do the job it is designed to do? \checkmark		2. Is it effective ? / does it work AW
	3 Is it better than the standard treatment being used? \checkmark		3. Is it an improvement on other drugs? / AW
			3. Can it be used to treat other symptoms/health problems / diseases? / AW ALLOW specific examples <i>e.g. can it be used to treat cancer</i> ?
	Total	21	

Question	Expected Answers	Marks	Additional Guidance
2 (a)	Fe + 2CH ₃ COOH \rightarrow Fe(CH ₃ COO) ₂ + H ₂ $\checkmark \checkmark$	2	Correct formula for H ₂ or formula of salt \checkmark correct formulae AND balanced \checkmark ALLOW Fe(C ₂ H ₃ O ₂) ₂ or Fe ²⁺ (CH ₃ COO ⁻) ₂ DO NOT ALLOW Fe(II)(CH ₃ COO) ₂
2 (b) (i)	Fe atom: $3d^6 4s^2 \mathbf{OR} 4s^2 3d^6 \checkmark$ Fe(II) ion: $3d^6$ Fe(III) ion: $3d^5 \checkmark$	2	Fe atom correct ✓ BOTH ions correct ✓ IGNORE '4s ⁰ ' for ions
2 (b) (ii)	 Half-filled d-shell / Half-filled d-orbitals (more stable) ✓ OR 3d⁵ configuration / 3d⁵ arrangement is (more) stable (than 3d⁶) ✓ 	1	ALLOW 'paired electrons are less stable than if unpaired' ORA ALLOW in 3d ⁵ electrons are in separate orbitals/d-subshells
2 (c) (i)	$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s) \checkmark \checkmark$	2	Formulae correct and balanced \checkmark ALLOW Fe ²⁺ (OH ⁻) ₂ correct state symbols \checkmark <i>if first mark not gained:</i> must be (aq) + (aq) \rightarrow (s) <i>or</i> (aq) + (aq) \rightarrow (s) + (aq)
2 (c) (ii)	Red-brown ppt is iron(III) hydroxide / (hydrated) iron(III) oxide ✓ Fe ²⁺ / Fe(II) ions/Fe(OH) ₂ are oxidised / lose electrons ✓ (by) oxygen ✓ THIS IS DEPENDENT ON Fe(II) ion/compound being oxidised	3	ALLOW correct formula, Fe(OH) ₃ / Fe ₂ O ₃ / Fe ₂ O ₃ .xH ₂ O ALLOW names May be shown by an equation: e.g. $Fe^{2^+} \rightarrow Fe^{3^+} + e^-$ Fe(OH) ₂ + O ₂ \rightarrow Fe ₂ O ₃ IGNORE 'by air'

2 (d) (i)	Ce(SO₄)₂ ✓			1	
2 (d) (ii)	2. moles of Fe ²⁺ in	$25.0 \text{ cm}^3 = 0.00$	18.5/1000) (= 0.00185) ✓ 185 5 x 1000 / 25.0 = 0.0740	2	The mark is for the working shown in bold ALLOW answer to 2 sig figs i.e. 0.074 and ecf from 1
2 (e) (i)	1. moles of A in 1 2. moles of A in 1		/ 213 (= 4.695 x 10 ⁻⁴) ✓ 0.10 / 213 sf	2	Remember that in calculations correct answer gets full marks with or without working ALLOW 4.70 x 10 ⁻³ (3 sf)
2 (e) (ii)	wavenumber / cm ⁻¹	bond	location		BOTH bonds correct ✓ BOTH locations correct ✓
	3150	3150 O-H carboxylic acid	carboxylic acid		
	1715	C=0	ketone AND/OR carboxylic acid √	2	
2 (e) (iii)	carboxylate (allow OR	to form: / a soluble salt / s formula) ✓	xyl group ✓ salt that dissolves / soluble	2	IGNORE references to intermolecular bonding

F334	Mark Sch	eme	June 2010
2 (f)	Any 5 from the following 6 marking points but if no QWC maximum mark is 4		Please annotate with ticks to show marks awarded
	1. Use an appropriate/suitable filter OR a filter having the complementary colour (if named must be yellow/green) \checkmark		If complementary ignore any other colour
	2. (Put a sample of the reaction mixture into the colorimeter and) take absorbance readings at set (time/regular) intervals AW \checkmark		QWC 'absorbance' must be spelt correctly in either mark 2. or 3. for that mark to be allowed (this is NOT an extra mark) ALLOW 'absorbency' but NOT 'absorbancy' NOTE if no 'absorbance', max mark = 4
	3. convert absorbance readings to concentrations using the calibration curve \checkmark	5	3. ALLOW for only one absorbance reading
	4. plot graph of concentration v time OR 1/time for reaction \checkmark		4. IGNORE rate
	 5. determine/measure /find half-lives from graph ✓ 6. constant half-life = first order ✓ 		 ALLOW points 5. and 6. may be shown using labelled diagrams 5. 'graph' must refer to concentration v time plot 5. find rate of reaction by drawing tangents on graph ✓ 6. if concentration doubles and rate doubles = first order / plot of rate v [B] gives (diagonal) line (through the origin) / directly proportional ✓
	Total	24	

F334

Question	Expected Answers	Marks	Additional Guidance
3 (a) (i)		1	ALLOW the linkage to proline ring (C,O and N atoms circled) DO NOT ALLOW if only the bond in C-N is circled
3 (a) (ii)	$\begin{array}{c} O \\ \parallel \\ H_2 N - C H_2 - C - O H \\ \checkmark \end{array}$	1	ALLOW H ₂ N–CH ₂ –COOH / full structure
3 (a) (iii)	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	2	Structure must be a zwitterion to score ALLOW COO ⁻ ALLOW + charge on H or N
3 (b) (i)	(at high temperatures / 50°C) intramolecular/hydrogen bonds break ✓ and active site lost/altered/changed ✓	2	IGNORE intermolecular / any other types of intramolecular force / changing hydrogen bonds ALLOW bonds in tertiary structure IGNORE references to denaturing ALLOW 'active site is deformed/distorted' / no longer complementary/fits substrate ALLOW 'tertiary structure' for 'active site'

-334	Mark Sch	Mark Scheme		
Question	Expected Answers	Marks	Additional Guidance	
3 (b) (ii)	(change of pH) affects charges on polar/some/certain groups/ active site OR ionisable groups are altered ✓		ALLOW a correct example (e.g. COOH, COO ⁻ , NH ₂ , NH ₃ ⁺) IGNORE references to denaturing	
	prevents correct interactions/bonds between enzyme and substrate AW \checkmark	2	ALLOW ionic interactions/bonds are disrupted between enzyme and substrate ALLOW substrate does not fit/bind/react	
3 (c) (i)	Rate = k x [P] x [enzyme]√		ALLOW 'hydroxylase' or E or enz or complete name for enzyme ALLOW '(rate equation) = k x [P] x [enzyme]'; must have '='	
	$mol^{-1} dm^{+3} s^{-1} \checkmark$ 2	2	ALLOW units in any order <i>and</i> dm ³ ALLOW '/' for '-1' e.g. dm ⁺³ / mol/ s and sec ⁻¹ ecf for units	
3 (c) (ii)	 (When [P] is low) not all enzyme active sites are filled/saturated OR P can form a P-enzyme substrate (can be given as an equation) OR active sites available for substrates OR P can bind to active sites AW ✓ 	2	DO NOT ALLOW 'there are an excess of enzymes' ALLOW the rate determining step is the formation of P - enzyme substrate / rds involves <u>one molecule</u> of P	
	(as [P] increases) rate increases in proportion (so first order) AW \checkmark		DO NOT ALLOW 'as [P] increases rate increases' alone. There must be some indication of how the rate increases e.g. rate doubles as [P] /conc. of P /amount of P /number of molecules of P / P doubles	
3 (c) (iii)	all the <u>active sites</u> are filled/saturated (any increase in [P] will not affect the reaction rate) OR no <u>active site</u> is available for P to bind to/react with ✓	2	ALLOW rds involves the breakdown of the enzyme-substrate complex (which does not depend on the concentration of P)	
	(so) order becomes/is zero ✓			

F334	Mark So	cheme	June 2010
Question	Expected Answers	Marks	Additional Guidance
3 (d)	Any two from:		
	speeds up reaction rate		
	reduces the number of steps in a synthesis \checkmark		ALLOW it is a one step process
	improves the atom economy AW \checkmark		
	reduces the amount of energy/heat required AW \checkmark	2	ALLOW lower temperature/pressure used/needed/required
	easier separation methods ✓	2	
	enzymes can be reused/recycled \checkmark		IGNORE renewed
	uses less toxic solvents/producing less hazardous waste no/fewer organic solvents used \checkmark		
	reduces use of more toxic catalysts √		
	Total	16	

Mark Scheme

Question	Expected Answers	Marks	Additional Guidance
4 (a)	1,4-diaminobutane ✓✓		 1,4-diamino ✓ ALLOW 1,4-diamine DO NOT ALLOW 1,4-butandiamine butane ✓ ALLOW butan (often in middle of name) but DO
		2	NOT ALLOW buta 1,6-diaminohexane scores 1 mark
			IGNORE gaps, commas and dashes
4 (b)			extra H ⁺ on one amino group ✓
	⁺ H_3N $N_{H_2^+}$ $N_{H_3^+}$ $\sqrt{}$	2	all correct ✓ ALLOW +ve charge on N or H IGNORE length of carbon chains / missing Hs on carbons ALLOW 1 mark if ALL 3 amino group Hs are correct but positive charge missing
4 (c) (i)	$\left \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	2	 amide group correct ✓ completely correct (including carbon chains) ✓ ACCEPT molecule the other way around. ALLOW structural formula or without brackets
4 (c) (ii)	(Secondary) amide ✓	1	DO NOT ALLOW peptide
	Hydrogen chloride / HCl 🗸		DO NOT ALLOW hydrochloric acid for the first mark
4 (c) (iii)	a small molecule/HCl has been eliminated/formed \checkmark	2	IGNORE 'water formed'

	Total	16	
	chains can move / slide over each other (and polymer softens) ✓		ALLOW less heat
	less energy / lower temperatures needed to break the imb in poly(ethene) / separate chains / enable chains to slide ORA ✓	3	ALLOW intermolecular forces ALLOW for both marks named imb from 4 (e) (i), provided <i>Stany</i> I bonds are stronger
4 (e) (ii)	intermolecular bonds in polythene are weaker than those in <i>Stanyl</i> ✓ ORA		Please annotate with ticks to show where ALL marks are awarded
4 (e) (i)	<i>Stanyl:</i> hydrogen bond(ing) ✓ <i>poly(ethene):</i> instantaneous (dipole)-induced dipole (bonds) ✓	2	ALLOW id-id bonding / van der Waals forces
4 (d)	 HCl is toxic/harmful/dangerous/polluting (to the environment) / HCl needs to be disposed of ORA ✓ ALTERNATIVE ANSWER C contains chlorine ✓ which requires extra energy/resources to make AW ✓ 	2	ALLOW HCI causes acid rain / is corrosive second mark depends on first
4 (d)	Water (rather than HCI) is formed in the reaction \checkmark		mark independently

334 Mark S				neme June 2010	
Question	Expected Answers			Marks	Additional Guidance
5 (a) (i)	Since <u>E</u> ^e for Cu(/Cu ²⁺) is more negative than Ag(/Ag ⁺) ORA \checkmark			2	<i>mark independently</i> ALLOW smaller/larger since both E° are positive IGNORE lower/higher OR references to redox processes ALLOW ' E°_{cell} ' for ' E° ', E° for Cu(/Cu ²⁺) is less positive than Ag(/Ag ⁺)
	electrons will flow/move (from Cu) to Ag / from Cu/(/Cu ²⁺ to Ag/Ag ⁺ \checkmark				ALLOW 'from copper to silver' <i>or</i> 'Cu to Ag ⁺ ' IGNORE 'electrons flow through water' / attract / gain DO NOT ALLOW 'from Cu ²⁺ '
5 (a) (ii)	0.46 V ✓			1	ALLOW + or – 0.46
5 (a) (iii)	$Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag \checkmark$			1	IGNORE state symbols
5 (b) (i)	Oxidising agent = $H^+ /H_3O^+ \checkmark$ E° values are measured with respect/compared to the (standard) H_2/H^+ half-cell AW / $E^{\circ} H_2/H^+ = 0 \checkmark$			3	ALLOW hydrogen ions
	metals with a negative electrode potential value will be oxidised by / will react with H ⁺ ions/HCI AW ORA ✓				ALLOW one mark for saying acids/H ⁺ can oxidise Zn but not Cu
5 (b) (ii)	 Moles of Cu²⁺ in 250 cm³ = 0.150 x (250/1000) ✓ Mass of copper in sample = 0.0375 x 63.5 = 2.381 ✓ 			3	1. The mark is for the working shown in bold
	3. % of Cu in brass = 2.381 / 3.97 x 100 = 60 ✓				ALLOW any number of sig. figs. ALLOW ecf from 1. and 2. DO NOT ALLOW 59
5 (b) (iii)	formula	copper(II) complex formed with EDTA ⁴⁻ [Cu(EDTA)] ²⁻		3	Mark separately 1 mark for each correct answer
	shape	octahedral			ALLOW without square brackets
	coordination number	6	√		
	Total			13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

