Mr or Relative Formula Mass:

The relative formula mass (M_r) of a compound is the relative atomic masses of all the elements in the compound added together.

<u>H₂O:</u>

Therefore, the M_r for water is 16 + (2x1) = 18

How to find the relative atomic mass of an element:

STEP 1: Find the element in the Periodic Table

STEP 2: Look for the larger of the two numbers

STEP 3: Refer to the given formulae and check how many of each element is being asked for; e.g. Carbon Dioxide has two Oxygen atoms so you need 2 x 16 = 32

Conservation of Mass in a Reaction:

In any reaction the total mass of products is the same as the total mass of the reactants.

Total mass of <u>REACTANTS</u> = Total mass of <u>PRODUCTS</u>

A good example would be magnesium oxide and hydrochloric acid reacting:

Here (on **BOTH** sides) there are:

1x Magnesium

1x Oxygen

2x Hydrogen

2x Chlorine

This means that the mass will be the same on both sides.

Calculating Mass:

There are four simple steps to follow when asked to calculate the mass:

STEP 1: Identify what the question is asking you, which of the compounds do you need to work out the mass?

STEP 2: Put a cross through any compounds that you don't require in your calculation.

STEP 3: Work out the Mr of the given compounds (that you NEED)

STEP 4: Work out the ratios and apply this to the question

+

Example:

What mass of **magnesium oxide** is produced when 60g of **magnesium** is burned in air?

 24
 16
 2Mg

 Mg
 O
 This

 12
 8
 We

2Mg

\rightarrow 2MgO			
2Mg = 2 x 24 = 48			
2MgO = 2 x (24 + 16) = 80			
This means that 48g of 2Mg makes 80g of 2MgO			
We want 60g of 2Mg so, we do 80/48 = 1.66g x 60 =100g			
Therefore, 60g of 2Mg makes 100g of 2MgO			

<u>PPQ(1):</u>

Cla She	are prepares calcium nitrate. e reacts calcium hydroxide with nitric acid.	
	$Ca(OH)_2$ + 2HNO ₃ \rightarrow Ca(NO ₃) ₂ + 2H ₂ O	
(a)	Calculate the mass of calcium nitrate that can be made from 3.15 g of pure nitric acid.	
	answer	g [3]
(b)	Clare reacts double the amount of nitric acid in an excess of calcium hydroxide.	
	What effect will this have on the amount of calcium nitrate made?	
		. [1]
	[Tota	al: 4]

OCR Specimen Paper B3 C3 P3

5 Michael investigates the decomposition of zinc carbonate, ZnCO₃.

Look at the apparatus he uses.

(a) The equation for the decomposition is

 $ZnCO_3 \rightarrow ZnO + CO_2$

The relative atomic mass, A_{r} , of Zn = 65, C = 12 and O = 16.

Show, by calculation, that 0.90 g of zinc carbonate should make 0.58 g of zinc oxide, ZnO.

(b) Michael predicts that he should make 0.58 g of zinc oxide.

Michael actually makes 0.50 g of zinc oxide.

Calculate his percentage yield.

[2] [Total: 4]

OCR Gateway May 2012 B3 C3 P3

(Refer to atom economy and percentage yield revision pack for part b)

SECTION C - Module C3

10 Stowmarket Synthetics manufacture ethanoic acid, C₂H₄O₂, by two different processes.

Process 1 $C_2H_6O + O_2 \rightarrow C_2H_4O_2 + H_2O$ Process 2 $CH_4O + CO \rightarrow C_2H_4O_2$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, <i>M</i> _r
ethanol	C ₂ H ₆ O	46
oxygen	0 ₂	32
ethanoic acid	C ₂ H ₄ O ₂	60
water	H ₂ O	18
methanol	CH₄O	32
carbon monoxide	со	28

The relative atomic mass of H = 1, of C = 12, and of O = 16.

(a) In process 2, Stowmarket Synthetics use 320 g of methanol.

Calculate the maximum mass of ethanoic acid that can be made.

OCR Gateway January 2013 C1 C2 C3

<u> PPQ1:</u>

No Mark Scheme available.

<u> PPQ2:</u>

Question		on	Answer	Marks	Guidance
5	(a)		$\frac{0.90 \times 81}{125} = 0.58 (2)$ but relative molecular mass of zinc carbonate 125 and of zinc oxide 81 (1)	2	
	(b)		86% (2) but <u>0.50</u> x 100 or (actual yield / predicted yield) x 100 (1) 0.58	2	allow 86.2 (%) / 86.21 (%) 86.0 (%) or 86.206897(%) = (1)
			Total	4	

<u>PPQ(3):</u>

Question		on	Answer	Marks	Guidance
10	(a)		32 (g) of methanol makes 60 (g) of ethanoic acid / 10 moles of methanol is used / 32 x 10 = 320 (1) So 320 (g) makes 600 (g) of ethanoic acid (1)	2	allow two marks for the correct answer of 600g even if no working out