

Chemistry B (Salters)

Advanced GCE

Unit F334: Chemistry of Materials

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
(1)	separates marking points
not	answers which are not worthy of credit
reject	answers which are not worthy of credit
ignore	statements which are irrelevant
allow	answers that can be accepted
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording
ora	or reverse argument
\checkmark	Correct point
×	Incorrect point
	Benefit of the doubt
FIERCE	No benefit of doubt given
	Error carried forward
	Omission mark
	Ignore
	Reject

Question	Answer	Marks	Guidance
1 (a)		1	DO NOT ALLOW missing Hs ALLOW –OH group
(b) (i)	acidified \checkmark (potassium) dichromate / (sodium) dichromate / $Cr_2O_7^{2-} \checkmark$ heat (under) reflux / reflux \checkmark	3	Any concentration of sulfuric acid / H ₂ SO ₄ DO NOT ALLOW hydrochloric <i>or</i> nitric acids IGNORE oxidation state of dichromate DO NOT ALLOW heat alone ALLOW heat with condenser
(ii)	(strong) peak/trough at about <u>1720–1740</u> (cm ⁻¹) indicates <u>C=O/carbonyl</u> group ✓ no <u>broad</u> peak/trough at approx. <u>2500–3200</u> (cm ⁻¹) so no – <u>OH/hydroxyl</u> (in –COOH) present OR no – <u>OH/hydroxyl</u> peak/trough at <u>2500–3200</u> AW ✓	3	C=O may be shown on the diagram of the spectrum by the correct peak/trough ALLOW specific frequency from within range IGNORE references to aldehyde or carboxylic acid for the 1720-1740 cm ⁻¹ peak
	ethanal / CH ₃ CHO ✓		ALLOW correct full structural and skeletal formulae ALLOW acetaldehyde
(c) (i)	a proton / H ⁺ acceptor ✓	1	

F334

Question	Answer	Marks	Guidance
(ii)	$HO + H_2O = HO + H_3O^+$	1	both circles required
(iii)	ALLOW If only $-O^-$ is circledcarbon dioxide / $CO_2 \checkmark$	2	
	$\left(\begin{array}{c} 0^{H} \\ 0^{H}$		ALLOW $(C_6H_7O_6)_2Ca / (C_6H_7O_6)_2Ca^{2+}$ ALLOW slight error in formula of ion <i>i.e.</i> number of H(6-8) and O(5-7) ALLOW with or without correct charges but not half and half
(iv)	E300 is a stronger acid (than phenol) \checkmark it fizzes/reacts with a carbonate but phenols don't \checkmark	2	ALLOW E300 is more acidic/in solution has a lower pH IGNORE references to stability of ions and/or electron delocalisation
(d) (i)	moles of $\text{KIO}_3^- = 0.00500 \times (25.0/1000) \checkmark = 0.000125$ moles of $I_2 = 3 \times 0.000125 = 0.000375 (3.75 \times 10^{-4}) \checkmark$	2	please annotate marks given with ticks ACCEPT 3.8 x 10 ⁻⁴ ecf for moles of KIO ₃
(ii)	moles of thiosulfate ⁻ = 0.00500 x (20.4/1000) \checkmark = 0.000102 moles of I ₂ = 0.5 x 0.000102 = 0.000051 (5.1 x 10 ⁻⁵) \checkmark	2	please annotate marks given with ticks ecf for moles of thiosulfate

F334

Question	Answer	Marks	Guidance
(iii)	1. moles of E300 = moles of I_2 from d(i) – moles of I_2 from d(ii) \checkmark	3	please annotate marks given with ticks
	= 0.000375 - 0.000051 = 0.000324		REJECT any negative answer for the 1 st mark at this stage ecf from parts d(i) and d(ii)
	2. concentration of E300 = $0.000324 \times 1000/250.0 = \checkmark$ 0.001296 mol dm ⁻³		ecf for second mark Note the calculations in marking points 2 & 3 may be reversed
	3. = 0.001296 x 176 = 0.228 g dm ⁻³ (this is over the allowed limit - NO) \checkmark (228 mg dm ⁻³)		A correct answer at any stage scores all previous marks answer must be in g dm ⁻³ or mg dm ⁻³ for 3 rd mark AND correct comment If 228(.096) mg dm ⁻³ has been calculated but concentration has been given as 0.001296 mol dm ⁻³ then award 3 marks. ecf from above ALLOW 'not over the allowed limit' – YES if appropriate answer must be given to at least 2 sig figs
(iv)	the concentration of E300 would be too low $AW \checkmark$	2	
	because it would appear as if there is more unreacted I_2 AW \checkmark		
(e)	restricted rotation around the C=C bond \checkmark	3	
	each C atom (in C=C bond) has two different groups/atoms attached to it \checkmark		may be shown using structural formulae
	the two –OH groups can only be on the same side of the C=C because the ring structure will not allow them to be on opposite sides / rotate $AW \checkmark$		IGNORE aromatic DO NOT ACCEPT needs additional explanation to ring structure

1	F334	
	JJJT	

Question	Answer	Marks	Guidance
(f) (i)	HO HO HO HO V	1	ALLOW if adjacent C is included in the circle
(ii)	-00C √	1	ALLOW any correct ester structure OR full structural formula ALLOW C ₁₇ H ₃₅ COO- OR -CO.O-C etc.
(iii)	concentrated sulfuric/hydrochloric acid	1	ACCEPT correct formula for either acid
(iv)	water ✓	1	ALLOW H ₂ O
	Total	29	

Question	Answer	Marks	Guidance
2 (a) (i)	$HO = CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$	3	ALLOW skeletal formulae or (eg) HOOC (CH ₂) ₄ COOH OR COOH (CH ₂) ₄ COOH If structural formulae are drawn DO NOT ALLOW missing H atoms. ALLOW CH ₂ O REJECT
(ii)	ether ✓	1	
(iii)	in <i>heating under reflux</i> the condenser is vertical OR mixture is evaporated and condensed/liquefied and returned to mixture <i>AW</i> OR no material/reactants/products/chemicals/substance is lost from the mixture <i>AW</i> ✓ in <i>distillation</i> the condenser is slope downwards / horizontal /attached at the side OR mixture/chemicals/molecules are evaporated and condensed (or liquefied) and collected OR mixture/chemicals/molecules are separated ✓	2	ALLOW use of correct diagrams with condenser labelled IGNORE any reference to flammability

Question	Answer	Marks	Guidance
(b)	 water absorption is greater in nylon because 1. it can form hydrogen bonds with water ✓ 2. because it has both –NH and C=O groups whereas POM has only an –O– group OR because it has more electronegative atoms (and suitable Hs) to form hydrogen bonds AW OR because it can form more hydrogen bonds with water than POM can ✓ 	6	please annotate marks given with ticks ORA ALLOW N atoms instead of more electronegative atoms
	 QWC – hydrogen bonding needs to be mentioned for both polymers to gain number 2 of these first two marks <i>POM has a lower melting point because</i> 1. weaker intermolecular bonds/forces between polymer chains/molecules √ 2. less <u>energy</u> needed to separate chains/molecules/IMBs √ 		IGNORE any names of intermolecular force given, this is a comparison mark
	 POM is more rigid because 1. polymer chains/molecules can not move/slide over each other so easily √ 2. chains are aligned/packed more closely OR crystallinity is greater √ 		ORA nylon-6 is more flexible because polymer chains/molecules can move over each other more easily ✓ chains are aligned less closely / crystallinity is less / more amorphous ✓
(c)	plasticiser ✓	1	IGNORE references to copolymerisation
	Total	13	

Question	Answer	Marks	Guidance	
3 (a)	 2-aminopentan(e)dioic acid 2-amino √ pentan(e)dioic acid √ 	2	mark independently IGNORE dashes and commas; absence of 'e' before 'dioic'; 1,5 between 'pentan(e)' and 'dioic' DO NOT ALLOW dicarboxylic acid DO NOT ALLOW amine; other numbers between 'pentan(e)'	
(b) (i)	acids will react with the amino/–NH ₂ group $AW \checkmark$ alkalis/bases will react with the carboxyl/–COOH group	2	and 'dioic' (2 nd mark is lost) ALLOW the amino/–NH₂ group can be protonated / is a proton/H⁺ acceptor ALLOW the carboxyl/–COOH group can lose a proton/H⁺ / is	
	AW✓		a proton/H ⁺ donor ALLOW hydroxyl/-OH group instead of –COOH group IGNORE any reference to acidic or basic.	
(ii)	 it forms a zwitterion OR an ion which has both a negative charge and a positive charge √ (these zwitterions/ions) attract each other very strongly OR zwitterions form a giant lattice OR ionic bonding is (very strong) √ high energy/heat required to separate particles √ 	3	IGNORE any reference to hydrogen bonding and other intermolecular bonds ALLOW a diagram for describing zwitterion	
(C)	one carboxylate group shown correctly \checkmark rest correct including charges \checkmark $\downarrow^{+}Na^{-}O$ $\downarrow^{-}NH_{2}$ $O^{-}Na^{+}$	2	ALLOW without Na ⁺ ALLOW any type of correct structural formula	

Question	Answer	Marks	Guidance
(d) (i)	type of isomerism = optical isomerism \checkmark (the C atom in box) is chiral / is bonded to 4 different groups / is asymmetric \checkmark so its mirror image is non-superimposable AW \checkmark	3	ALLOW stereoisomerism IGNORE any reference to enantiomers
(ii)	HO OH NH2	1	IGNORE any adjacent C atom or NH ₂ group included in circle
(e) (i)	Either \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	1	

Question	Answer	Marks	Guidance
(ii)	<pre>two answers from the following: more effective / faster acting ✓ less expensive/cheap<u>er</u> (to manufacture) ✓ smaller dose required ✓ easier to formulate/administer AW ✓ fewer side-effects ✓ can treat other symptoms / wider application ✓</pre>	2	DO NOT ALLOW 'better' for 'more effective' ALLOW 'worked better than'
(iii)	one answer from the following: safety tests on drugs for use during pregnancy ✓ test to see if drug can pass through placenta AW ✓ longer period of testing / longer clinical trials ✓ testing on (pregnant) animals ✓	1	ALLOW optical isomers can now be separated
	Tot	al 17	

Q	luesti	on	Answer		Guidance
4	(a)	(i)	oxidation states of Br: in $BrO_3^- = +5$ AND in Br^- (aq) = -1 \checkmark <u>oxidation state</u> of Br decreases / is reduced in the reaction $AW \checkmark$	2	ecf IGNORE any reference to electron loss or gain
		(ii)	BrO ₃ ⁻ + 6H ⁺ + 6Fe ²⁺ → Br ⁻ + 3H ₂ O + 6Fe ³⁺ correct formulae for reactants and products \checkmark equation balanced \checkmark	2	DO NOT ALLOW FeBr ₃ IGNORE any extra electrons
		(iii)	to provide H^+ / acidic conditions AW OR act as an antioxidant OR as a reducing agent $AW \checkmark$	1	IGNORE catalyst
	(b)	(i)	any 2 marking points from the following: BrO_3^- and Br^- are colourless but Br_2 is brown/ red-brown/dark red/orange/coloured \checkmark Increase in / change in colour in the reaction \checkmark Increase/change in absorbance in a colorimeter in the reaction \checkmark	2	ALLOW the reactants are colourless but product is coloured etc ALLOW <u>only</u> bromine is coloured IGNORE any named colour NOTE colour changes from colourless to red-brown(etc.) as Br ₂ is formed from BrO ₃ ⁻ and Br ⁻ scores 2 marks
		(ii)	Rate = k x [BrO ₃ ⁻ (aq)] x [Br ⁻ (aq)] ² x [H ⁺ (aq)]	3	The concentration terms must be multiplied together NOT added ALLOW without 'x' signs and state symbols If curved brackets () penalise once, rest ecf

Question	Answer	Marks	Guidance
(c) (i)	$4.5 \times 10^{-6} = k \times 7.00 \times 10^{-4} \times 5.00 \times 10^{-2} \times (2.00 \times 10^{-1})^2 \checkmark$	2	ALLOW any correct rearrangement of equation
	k = 3.2 ✓		ecf BUT must be to 2 sig figs . for 2nd mark
(ii)	mol ⁻³ dm ⁺⁹ s ⁻¹ √	1	ALLOW in any order ALLOW dm ⁹
(iii)	temperature √	1	IGNORE references to standard conditions
(iv)	slow step of the reaction / rds depends upon the species given in the rate equation \checkmark	3	1 st mark is for relationship between rate equation / orders appearing in the rate equation and species forming transition state of slow step
	in this case two H ⁺ , BrO ₃ ⁻ and a Br ⁻ \checkmark		2 nd mark for the 4 species involved IGNORE any reference to moles of species
	so the two H ⁺ and the BrO ₃ ⁻ could combine to form $H_2BrO_3^+$ (in a fast step/s) \checkmark		3rd mark for suggesting how the intermediate is formed
	Total	17	

Mark Scheme

Question	Answer	Marks	Guidance
5 (a)	<pre>(ions) absorb certain/specific/some frequencies/wavelengths/colours of (visible) light ✓ transmits complementary colour / other</pre>	2	'absorbing colour/light' is insufficient for the 1 st mark. use of 'emit' is a CON for the 2 nd mark IGNORE radiation <i>alone</i> / transition metals ALLOW visible radiation IGNORE reflects
	frequencies/wavelengths ✓ QWC – for following word, used correctly: absorb(s) / absorbing / absorption / absorbance / absorbed (spelling must be correct for first mark)		ALLOW complementary colour is seen
(b)	Any four of the following: O_2 can oxidise V^{2+} / V^{2+} can reduce $O_2 \checkmark$ forming $V^{3+} \checkmark$ V^{3+} can be oxidised further (by O_2) to VO^{2+} which is blue, but not further/not to $VO_2^{+} \checkmark$	4	please annotate marks given with ticks ALLOW electrons lost or gained ALLOW air (rather than oxygen)
	(blue and not green) because electrode potential of O ₂ / OH ⁻ is more positive <i>ORA</i> \checkmark (blue and not yellow) because electrode potential of O ₂ / OH ⁻ is less positive than VO ₂ ⁺ / VO ²⁺ <i>ORA</i> \checkmark		DO NOT ALLOW electronegativity DO NOT ALLOW higher/lower electrode potential

F334

Question	Answer				Marks	Guidance
(c) (i)	coordination number	6 ✓			4	
	shape of ion	octahedral √				
	name of ligand	water √				ALLOW 'aqua' DO NOT ALLOW name given for complex ion
	type of bonding between vanadium and ligand	dative (covalent) coordination ✓	dative (covalent) / coordinate / coordination ✓			DO NOT ALLOW covalent alone
(ii)	Ligand exchange / ligand / complex formation ✓	igand substitution / ligand displacement $$			1	IF NOT 'complex formation' then answer must contain 'ligand'
(d)	3d ³ (4s ⁰) √				1	
(e)					2	all correct $\sqrt[4]{}$
			true	false		two correct ✓
	they can act as homogeneous catalysts because vanadium can exist in several oxidation states					
	in heterogeneous reactions vanadium can only use s electrons to form weak bonds on the catalyst surface✓in heterogeneous catalysis there is a lowering of the activation enthalpy for the overall reaction✓			~		
				Total	14	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

