
F453 Module 8: Low Level Languages

8.2: Features of 

Low-Level 

Languages



2

F453 Module 8: Low Level Languages

2

What this module is about

• In this module we discuss:

a. explain the concepts and, using examples, demonstrate 

an understanding of the use of the accumulator, 

registers, and program counter;

b. describe immediate, direct, indirect, relative and indexed 

addressing of memory when referring to low-level 

languages;

c. discuss the concepts and, using examples, show 

an understanding of mnemonics, opcode, 

operand and symbolic addressing in assembly 

language to include simple arithmetic operations, 

data transfer and flow-control.



3

F453 Module 8: Low Level Languages

Low-Level Languages

• A low level language is one whose 

programming statements are geared towards 

a particular CPU family, such as the x86 family 

of processors. Low level languages are almost 

(but not quite) machine code.

• 'Assembly language' is an example of a low 

level programming language.

• Chip makers such as Intel and ARM provide 

programmers with an Assembly Language 

with which to code their particular CPU.

3



4

F453 Module 8: Low Level Languages

Low-Level Languages

• Some features of Low Level languages include

– They are CPU specific, making direct use of internal registers

– 'Mnemonics' are used as programming code such as MOV or ADD

– Many different memory modes can be used (previous presentation)

– Labels are used as reference points to allow the code to jump from one part to another.

• Advantages

– Low level languages allow for close control of the CPU, for example many device drivers are coded in assembly 

language.

– They can be very efficient. Well-optimised code written in a low level language can be made to run very quickly 

compared to other programming paradigms.

• Disadvantages

– They are difficult to use as the programming commands can be quite obscure

– A good assembly language programmer needs to know a lot of detail about the internal structure of the CPU -

e.g.its registers and memory management methods

– Low level languages produce the least portable source code.

• Assembly language looks like this:
1. .MODEL SMALL;

2. .STACK; 

3. .CODE;

4. mov ah,1h; moves the value 1h to register ah

5. mov cx,07h;moves the value 07h to register cx

6. int 10h;

4



5

F453 Module 8: Low Level Languages

Mnemonics

• The registers within a CPU store and process binary data. In theory the programmer 

could load data and instructions directly into the registers in pure binary, like this:

– 10110000 00110010

• This instructs a Intel 8086 processor to load 32 into its accumulator. Difficult to 

remember!

• A slightly easier way of coding this would be to code the same instruction in 

hexadecimal. Like this:

– B0 32

• This is 'machine code' and it is difficult to program at this level and yet retain an 

understanding of what the software is doing. So the CPU chip makers supply a set of 

Mnemonics for the programmer to use with their processors.

• Mnemonics are a set of programming instructions that are later translated into pure 

machine code by a piece of software called an 'assembler'.

• For example the machine code above in mnemonic form looks like:

– MOV AL, 32h

• This makes more sense to the programmer. You can see that the command is instructing 

the CPU to load 32 hex immediately into a register called AL. 

5



6

F453 Module 8: Low Level Languages

Instruction Set

• Assembly language consists of a set of mnemonics that can be 

used to program a CPU. There are a number of mnemonics that 

together make up the complete instruction set of the CPU. They 

can be grouped according to the kind of processing they cover.

• For example, in the Intel 80186 instruction set some of the 

mnemonics are

– Arithmetic mnemonics : ADD, SUB, DIV, MUL

– Data transfer mnemonics : MOV, POP, IN, OUT

– Logic mnemonics : AND, OR, XOR, NOT

– Jump mnemonics : JMP, JZ (jump if zero)

– Miscellaneous mnemonics : NOP (Do nothing for a bit)

• One of the skills in writing assembly code is to become familiar 

with the instruction set of the target CPU.

6



7

F453 Module 8: Low Level Languages

Opcodes and Operands

•An opcode is short for 'Operation Code'.

•An opcode is a single instruction that can be executed by the 

CPU. In machine language it is a binary or hexadecimal value such 

as 'B6' loaded into the instruction register.

•In assembly language mnemonic form an opcode is a command 

such as MOV or ADD or JMP.

•For example

– MOV, AL, 34h

•The opcode is the MOV instruction. The other parts are called the 

'operands'.

•Operands are manipulated by the opcode. In this example, the 

operands are the register named AL and the value 34 hex.

7



8

F453 Module 8: Low Level Languages

Symbolic addressing

• Another key aspect of programming is to fetch or store 

data and instructions from memory.

• The simplest way to do this is to refer directly to a 

memory location such as #3001. But this brings a 

number of problems (remember last presentation)

– it is difficult to see the meaning of the data in location #3001

– the data may not be able to be located at #3001 because 

another program is already using that location.

• To overcome this issue, the idea of 'symbolic addressing' 

is used. Instead of referring to an absolute location, the 

assembly language allows you to define a 'symbol' for 

the data item or location.

8



9

F453 Module 8: Low Level Languages

Symbolic addressing

• The symbols being defined by this bit of code are DIAM, 

VarA, VarB. In the case of DIAM it is referring to a constant 

value of 2. The size of the variables VarA and VarB are 

defined, but notice that their location is not defined.

• It is the job of the assembler to resolve the variables into 

locations in memory

9

.MODEL SMALL Use small memory model

.STACK 2048 define the stack

DIAM EQU 2 define a constant called diam

VarA DB define a variable called VarA as a byte

VarB DW define a variable called VarB as a word

main: MOV AL,[VarA] Move data in VarB into register AL



10

F453 Module 8: Low Level Languages

Symbolic addressing

• The advantages of using symbolic addressing 

over direct memory references are:

– The program is re-locatable in memory. It does not 

particularly care about its absolute location, it will still 

work

– Using symbols makes the software much more 

understandable

• When the code is ready to be loaded and run, a 

'symbol table' is created by the assembler for 

the linker and loader to use to place the 

software into memory.

10



11

F453 Module 8: Low Level Languages

Arithmetic operations

• Any software language needs to support the basic functions of a 
running program and a low level language is no different.

• It must be able to support the basic arithmetic operations of 
adding, subtracting, multiplying and dividing.

• These operations are determined by a set of fairly self-evident 
mnemonics.

11



12

F453 Module 8: Low Level Languages

Arithmetic operations

• The full instruction set of an actual CPU also includes 

variations to the basic arithmetic operations such as 

signed arithmetic, bit shifts and bit rotations.

• Operations such as additions have a single opcode 

followed by two operands. On the other hand 

operations such as incrementing and decrementing 

only need one operand.

• There are flags also available in the Program Status 

Word (PSW) register to indicate that the operation may 

have caused an overflow or underflow. There is also a 

carry flag available to indicate if the operation has 

resulted in an arithmetic carry (or borrow) has occurred

12



13

F453 Module 8: Low Level Languages

Logic operations

• As well as the usual arithmetic operations, a CPU will also be 
performing logic operations.

• These logical operations will also set or reset a number of flags in 
the Program Status Word (PSW) depending on the outcome. These 
flags can then be tested to cause a branch or a jump in the code to 
occur.

13



14

F453 Module 8: Low Level Languages

Jumps and branching

• Most programs need to run code that is dependent on the 

outcome of some test within the software, this is called 'branching'.

• Common programming forms include loops, iteration and 

subroutine calls, and these need branching and jumping to work.

• Sometimes the code needs to jump to another location regardless. 

This is called an unconditional jump. For example to avoid the 

next line of code being executed at the end of a routine.

• On the other hand, a jump may be dependent on some condition 

being met such as a flag being 1 or 0. This is called a conditional 

jump.

• A relative jump will cause the instruction an offset number away 

from the current one to be executed. An absolute jump will go to 

the instruction at a specific address.

14



15

F453 Module 8: Low Level Languages

Jumps and branching

• The conditional jumps shown usually look to the Program Status Word 
(PSW) register to see if the zero or carry flag has been set, if the condition 
is true, then the program counter is loaded with the address of the 
instruction given in the jump command.

• The CALL and RET commands make use of the stack to locate subroutine 
locations and return addresses.

15



16

F453 Module 8: Low Level Languages

Data transfer

• A CPU, in order to process data, needs to move that data 

around. This includes moving data between its internal registers 

and it includes moving data in an out of external RAM.

16



17

F453 Module 8: Low Level Languages

Data transfer

• The MOV command may include a number of variants within 

the full instruction set, but it basically copies data from one 

location to another.

• The PUSH and POP operations are the commands that control 

the contents of the stack. The stack is used to control subroutine 

calls and returning from subroutines.

• A CPU may have a number of 'ports'. A port is one or more 

physical pins on the chip assigned to handling data moving into 

and out of the chip.

• For example a serial port or an 8 bit data port may be available 

on the chip. CPUs especially developed for control purposes 

have many complicated ports, for example an automotive 

engine management CPU.

17



18

F453 Module 8: Low Level Languages

Example

18

.MODEL SMALL Define the memory model to be used

.STACK 2048 Set up the stack

Two EQU 2 Define a constant

VarB DB Define a symbol as a byte

VarW DW Define a symbol as a word

S DB “Hello World”, 0 Define a string

.CODE Start of code block

main: MOV AX, DGROUP Move an address into a word register

MOV DS, AX

MOV [VarB], 35 Initialise variable called VarB

SUB VarB, 35 Subtract 35 from VarB, this will cause a zero flag in the PSW to be set

JZ :mysub Jump if zero to label mysub

OUT #1,3 If not zero then output data to port 1

JMP :leave Unconditionally jump to label leave

mysub: IN AL, #1 Read port 1 and load into register AL

leave: MOV AL, 34



19

F453 Module 8: Low Level Languages

Example Notes

• The first statement .MODEL SMALL is a telling the assembler what kind of memory 

model to use, in this case 'small' will probably mean only a 16 bit word is needed 

for addressing purposes. This is faster than having to fully resolve a full 32 bit word 

address every time.

• Then the stack is declared along with some symbolic variables.

• Another declaration .CODE defines the start of the code itself.

• Labels such as main, mysub and leave are used to identify specific points within the 

code

• There are a number of MOV commands to shuffle data around

• There is a SUB arithmetic command that alters the value of the variable varB

• There is a conditional jump JZ (JZ :mysub) that is testing the outcome of the prior 

operation. This code is artificial as VarB was initialised with 35 and then 35 was 

subtracted, so the result will always be zero. Or this is may be an example of a 

typical software bug where the programmer did not intend to do that.

• You can also see an unconditional JMP command (JMP :leave) to by-pass the 

instruction at mysub.

19



20

F453 Module 8: Low Level Languages

Further Task

•When you get home see if you can find any 

Intel x86 assembly code simulators that 

illustrate how all this really works.

• There may be lots of animations on the web 

to show this visually.

20


